Sexual selection

Sexual selection

- Sexually reproducing animals often exhibit variance in mating success driven by choices made by potential mates, or competition with members of the same sex
- This variance has a heritable basis, and thus the conditions for selection to modify lineages are fully in play

Darwin and sexual selection

Formulated and expanded by Darwin in 1871: <u>The</u> <u>Descent of Man, and</u> <u>Selection in Relation to Sex</u> T- BRANKE CONTRACTOR

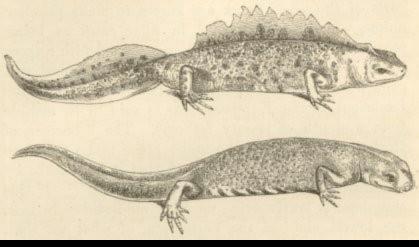


Fig. 31. *Triton cristatus* (half natural size, from Bell's 'British Reptiles'). Upper figure, male during the breeding-season; lower figure, female.

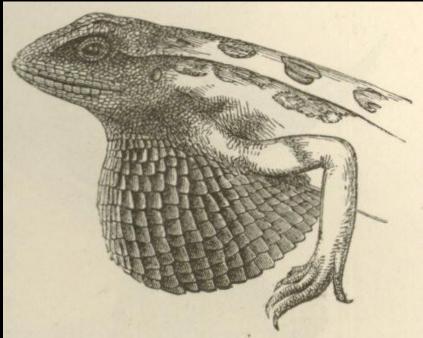


Fig. 33. *Sitana minor*. Male, with the gular pouch expanded (from Günther's 'Reptiles of India.').

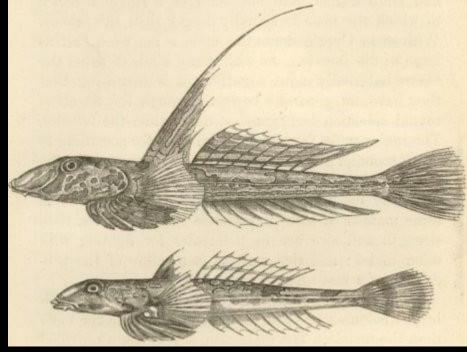


Fig. 28. *Callionymus lyra*. Upper figure, male; lower figure, female.

Fisherian runaway

- Described in "The genetical theory of sexual selection"
- If females select males (for example) differentially then:
- Genes for selected trait and genes for preference of selected trait will be passed on
- Selected traits <u>may</u> be arbitrary

Sex: what's the point?

Hemidactylus mabouia

Hemidactylus garnottii

Sex: what's the point?

- Evolution of sex advantageous in generating novelty (competition with evolving threats)
- = Red Queen hypothesis
- There is also evidence and theory predicting how sexual selection in sexually reproducing animals may "purge" a population of deleterious alleles*

*Agrawal, Aneil F. "Sexual selection and the maintenance of sexual reproduction." *Nature* 411.6838 (2001): 692-695. Differential investment and sexual selection

• FACT: males and females often differ in reproductive investment

• Therefore: females (for example) should be choosy

Operational sex ratios and sexual selection

- Operational Sex Ratio (OSR) describes how biased the pool of potential mates is, taking into account who is actually capable of breeding in the population
- Highly biased OSR is usually correlated with high levels of sexual selection
- Factors which may affect OSR are differential survival, development rates...

Sexual selection: may take one or both of two forms

- Intrasexual selection- one sex competes with each other (physically) for a territory or mate (s)
- Intersexual selection- one sex evaluates display, courtship or some other factor and chooses who to mate with

• ALSO: mutual sexual selection (NOT as well studied!)

Intrasexual selection

- Darwin calls this the "Law of Battle"
- Basically, competition between members of the same sex for access to mates
- Often correlated with elaborate male adaptations for combat, or behaviours

Example: stag beetles

Video by Tammy Bergström: https://youtu.be/r34FSI2HKPY

Note that the "Law of Battle" does not often mean a fight to the death!

- Combat between rivals is most often ritualized
- This is best thought of as mutual signalling of quality, and an opportunity for each combatant to assess their relative strength
- "losers" of these bouts don't just give up they may:
- 1. Wait- ceding to a dominant competitor temporarily may result in future mating opportunity
- 2. Defer to kin- if competing with close relatives, the cost in inclusive fitness by continuing to escalate may outweigh the benefit of continued struggle
- 3. Perform an alternative specialization (e.g. adopt a "sneaker male" strategy

West-Eberhard, Mary Jane. 1979. "Sexual Selection, Social Competition, and Evolution." *Proceedings of the American Philosophical Society* 123 (4): 222–34

Example: male combat in Neotropical Rattlesnake

Video by Allan Franco available here

(shot at Parque Nacional de Chapada dos Guimarães, Mato Grosso, Brazil)

Intersexual selection: female choice, or choice in general

- This can operate in conjunction with or separate from the law of battle
- This topic is often given more prominence in both theory and experimentation

Example: sexual and natural selection by Cornell Lab of Ornithology

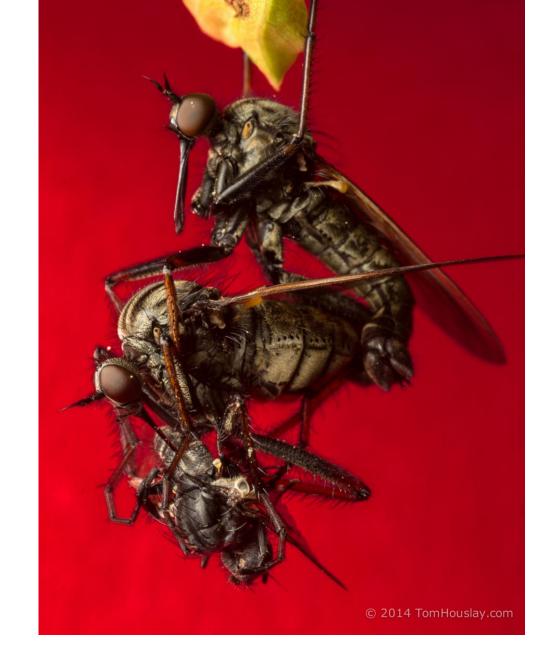
Video available <u>here</u>

Commonly selected attributes

- Territory size/quality
- Appearance: brightness, symmetry, size
- Display: duration, complexity, novelty (or fidelity), rate, tone

Intersexual selection is not just "female choice"

 Sex reversal of "choosy sex" occurs when the male provides the majority of reproductive effort (rearing offspring, for example)


Mutual sexual selection

- In what types of mating system might you expect mutual sexual selection?
- Has been demonstrated in FEW taxa, mostly monogamous species with biparental care

Why sexual selection? 1: Direct benefits

Selection of attractive partners has a direct fitness benefit (e.g. provision of a nuptial gift, living in a good territory)

Kokko, Hanna, Robert Brooks, Michael D. Jennions, and Josephine Morley. 2003. "The Evolution of Mate Choice and Mating Biases." *Proceedings of the Royal Society of London B: Biological Sciences* 270 (1515): 653–64. doi:10.1098/rspb.2002.2235.

Anthidium manicatum (European wool-carder bee)

Pisaura mirabilis male carrying a silk-wrapped nuptial gift. (Photo by <u>Ferran Turmo Gort</u>, licensed under <u>CC BY 2.0</u>

AND STREET

Why sexual selection? 2. Indirect benefits: Reconciling Fisher and Zahavi

- Fisherian runaway suggests that "arbitrary" characters may by chance be preferred (i.e. the benefit is in having "sexy sons"
- Zahavi: the "handicap principle", later the "good genes hypothesis". Display is an honest signal of genetic quality
- These are not mutually exclusive: if both attractiveness and fitness are heritable and genetically variable, they should become correlated

Zahavi, A. 1975 Mate selection: a selection for a handicap. *J. Theor. Biol.* **53**, 205–214.

Why sexual selection? 3. Sensory Drive

- Also known as sensory exploitation, sensory bias etc.
- Some aspect of the selected display arose due to bias in sensitivity in an environment- e.g. the colour of male display similar to the colour of a resource or danger
- In a general sense, the environment and the signal must be considered together
- This is good for mechanistic explanation, but also can provide the initial impetus for Fisher-Zahavi processes
- Much research on sensory exploitation models currently underway with jumping spiders
- Q: how do widow sexual displays square with sensory drive?

Sensory drive in action: Puerto Rican Anoles

Video from bioGraphic available here (California Academy of Sciences)

Sexual selection and natural selection: at odds?

- Often so: the cost to males of exaggerated characteristics or displays is likely increased predation
- Costs to females: must balance benefits of choosiness with the potential cost of forgoing mating opportunities

Issues with studying sexual selection: sensory non-overlap

- Our sensory world and that of other animals do not often overlap
- We may fail to appreciate significant variation because we cannot detect it
- The bases of potential sexual selection and often of natural selection may therefore be unclear
- Examples: colour capabilities, low light vision, vibration detection, acoustic mapping, faster reflexes....
- CHEMICALS!

Issues with studying sexual selection: time, space, distance

- Courtship and mating events may be extremely difficult to observe, and take place at accelerated or decelerated time scales compared to what we are able to appreciate
- The inter-generational products of selection (change in offspring, and offspring's fitness) may be impossible to track

So why? Why study something so difficult?

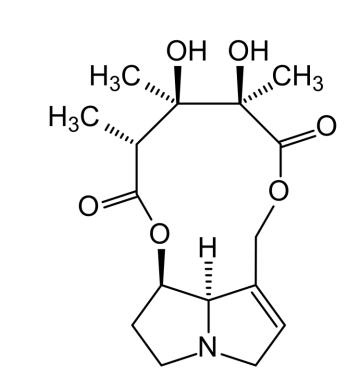
- It is interesting!
- Has important evolutionary implications, may help lead to speciation

What can we do?

- Consider very carefully the sensory modalities of the organism in question
- Analyse the environment: what cues might be maximally transmissible? Which cues are unlikely?
- Which types of display might be arbitrary, which might honestly signal quality in mates?
- Are we assuming too much by jumping to female choice?

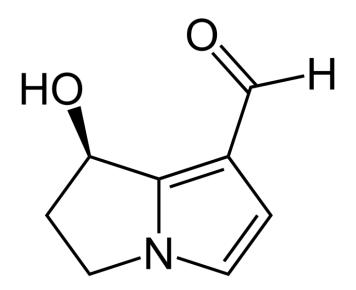
What can we do?

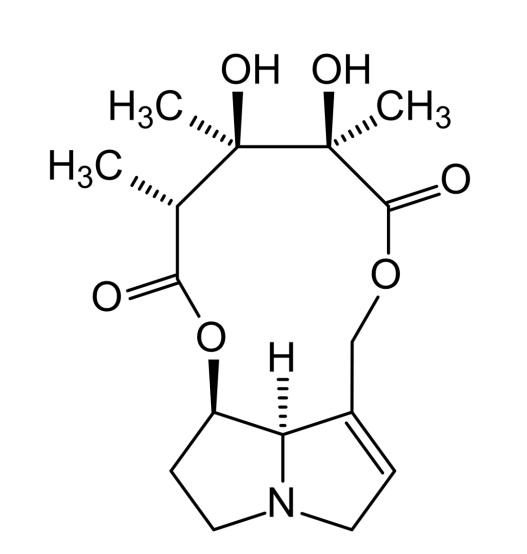
- Consider using technology to aid observation: high speed cameras, multispectral imaging, chemical analyses...
- Observe and consider animals behaving in their environment wherever possible


Take a break!

Eisner and Meinwald, 1995

Photo by Mark Yokoyama used under a <u>CC-NC-ND-2.0</u> licence


Utetheisa ornatrix (Lepidoptera, Erebidae)



Monocrotaline

Photo by Mark Yokoyama used under a <u>CC-NC-ND-2.0</u> licence

Hydroxydanaidal

Monocrotaline

Nephila clavipes Golden-silk Orbweaver

Argiope aurantia (yellow garden spider)

Pyrrolizidine alkaloids

- Hepatoxic, present in many plant families
- Also known to be used by *Danaus glippus* males in formation of sex pheromone

Hydroxydanaidal: an honest signal?

• See Conner et al. 1990